(Government Aided Autonomous Institute)
Munshi Nagar, Andherí (W) Mumbai -400058

END SEMESTER EXAMINATION - MARCH 2023

F.U.B.Treh $(G M, E) \operatorname{sen} I$

Program: First Year Engineering (C-M-E)

Course Code: BS-BT101

Course Name: Differential Calculus and Complex Numbers

Duration: 3 Hours 313123
Maximum Points: 100
Semester: I

Note:

1. Attempt Any Five Questions
2. Answers to the sub questions should be grouped together

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institate)
Munshi Nagar, Andheri (W) Mumbai - 400058
END SEMESTER EXAMINATION - MARCH 2023

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute)
Munshi Nagar, Andheri (W) Mumbai - 400058

END SEMESTER EXAMINATION - MARCH 2023

End Semester - $10^{\text {th }}$ March 2023 Examination

$$
\text { F.4. (Gm.ED } \operatorname{sen} I \quad 1013123
$$

Class: $\mathrm{FY}(\mathrm{C} / \mathrm{M} / \mathrm{E})$
Course Code: ES-BT102
Course Name: Basic Electrical Engineering
Duration: 3h
Semester: I
Maximum Points: 100

- Attempt any Five questions.
- Make suitable assumptions wherever necessary.
Q. No

Q1. (a) State Maximum Power Transfer Theorem and also derive the condition for maximum power to be transfer to happen.
Q1. (b) A coil of resistance 3Ω and inductance of 0.22 H is connected in series with imperfect capacitors. When such a series circuit is connected across a supply of $200 \mathrm{~V}, 50 \mathrm{~Hz}$ it has been observed that their combined impedance is $3.8+\mathrm{j} 6.4 \Omega$. Calculate capacitance and its equivalent resistance.
Q1. (c) Compare an ideal and a practical transformer.
Q1. (d) Find $\boldsymbol{R}_{\text {st }}$ for the circuit given below

Q2.(a) Using Superposition Theorem find current through 5Ω resistor.

Q2. (b) Determine Thevenin's Equivalent circuit and hence find current through 30Ω resistor in the network as shown below,

Q2. (c) A capacitor is placed in parallel with two inductile loads. Current I_{I} through first inductor is 30 A at 30° lag and the current I_{2} through second is 50 lag $60^{\circ} \mathrm{lag}$. What must be the current I_{3} in the capacitor so that the current in the external circuit is of unity power factor.

Q3. (a) A resistance and capacitance in series connected across 250 V supply
$8 \quad 2 \quad 4$ draws 5 A current at a frequency of 50 Hz . When frequency is increased to 60 Hz it draws a current of 5.8 A . Find the values of R and C .
Calculate the active power, reactive power and apparent power in the second case.
$\begin{array}{llllll}\text { Q3. (b) Use Nodal analysis to find the node voltages } V_{A}, & V_{B} \text { and } V_{C} \text { and also find } & 8 & 1 & 4\end{array}$
current through 3Ω resistor in the circuit.

Q3. (c) Each of the delta connected load consists of an impedance of $(5+\mathrm{j} 20) \Omega$. The line voltages are 400 V . Find (i) phase voltage, (ii)line current, (iii)phase current, (iv)power consumed, (v) reactive power and (vi)apparent power.

Q4. (a) For a R-L-C series network draw impedance triangle, voltage triangle, and power triangle when $\mathrm{X}_{\mathrm{L}}=\mathrm{X}_{\mathrm{C}}$. Also give equation for apparent power, real power and reactive power.
Q4. (b) A current of 5 A flows through a non- inductive resistance in series with a choking coil supplied at $250 \mathrm{~V}, 50 \mathrm{~Hz}$. If the voltage across the coil is 200 V and 125 V across non inductive resistance. Calculate:
(i) Parameters of the coil.
(ii) Power absorbed by the coil and that by the circuit.
(iii) Power factor of the circuit and that of the coil.

Q4. (c) For the series parallel circuit shown below, find:
(i) Supply current I
(ii) Impedance of the circuit
(iii) Currents in two parallel branches I_{s} and I_{2}
(iv) Power factor of the circuit and of parallel branches.

$200 \mathrm{~V}, 50 \mathrm{~Hz}$
Q5. (a) Obtain the relation between the line parameters and phase parameters of the three-phase star connected load. Draw a neat phasor diagram for the

End Semester - 10^{hn} March 2023 Examination
same.
Q5. (b) A balanced Star connected load is connected to a $400 \mathrm{~V}, 50 \mathrm{~Hz}$, three phase A.C. supply. A phase current of 80 A at 0.8 p.f is drawn by the load. Find:
(i) Phase voltage.
(ii) Total active power consumed.
(iii) Parameters of the load.

Q5. (c) Each of the star connected load consists of a non-reactive resistance of 100Ω in parallel with a capacitance of $31.8 \mu \mathrm{~F}$. Calculate the line currents, power absorbed, total KVA and power factor when connected to a $420 \mathrm{~V}, 3-\varphi, 50 \mathrm{~Hz}$ supply.
Q6. (a) OC and SC rest on a $5 \mathrm{KVA}, 200 / 400 \mathrm{~V}, 50 \mathrm{~Hz}$ single phase transformer
6
2
4 gave the following results.
(i) Draw equivalent circuit referred to primary side with all the parameters marked on it.
(ii) Calculate the approximate regulation of transformer at full load 0.8 p.f. lagging
(iii) Calculate efficiency of the transformer at unity power factor.

$O C$ (LV side)	200 V	1 A	100 W
SC (HV side)	15 V	10 A	85 W

'26. (b) Explain with the help of a neat diagram no load operation of the practical transformer. Draw the phasor diagram of the transformer operating at lagging load.
Q6. (c) A $30 \mathrm{KVA}, 3000 / 300 \mathrm{~V}$, single phase 50 Hz transformer has a primary resistance and reactance of 3.5Ω and 4.5Ω respectively. The secondary resistance and reactance are 0.015Ω and 0.02Ω respectively. Find (i) primary side and secondary side rated current (ii) equivalent resistance and reactance referred to HV side (iii) equivalent resistance and reactance referred to LV side
Q7 Attempt any two:
$6 \quad 3 \quad 4$
(i) Explain the construction of the dc motor with the help of a neat diagram and also explain its working principle.
(ii) Why single-phase induction motor is not self-starting. Explain any one method to make itself starting.
(iii) Obtain the condition for maximum efficiency in a singlephase transformer.

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute)
Munshi Nagar, Andheri (W) Mumbai - 400058

End Semester Examination

$$
\begin{aligned}
& \text { F. Y } \left.(c, m){ }^{13^{\text {th }}}\right)^{\text {March }}{ }^{2023} I \\
& 1313 / 23
\end{aligned}
$$

Program: UG First Year
Course Code: ES-BT104
Course Name: Engineering Mechanics - I

Duration: 3 Hours
Maximum Points: 100
Semester: I

Notes:

- Solve any five main questions
- Assume suitable data if necessary and state it clearly
- Clearly write units everywhere. Points will be deducted in each place units are missing
- Figure on right indicate maximum points for the given question, course outcomes attained, Bloom's Taxonomy Level and Performance Indicators

Munshi Nagar, Andheri (W) Mumbai - 400058

Figure 2.

2	a	Explain the angle of friction and angle of repose with neat sketches	$\mathbf{5}$	$\mathbf{1 , 2}$	$\mathbf{1 , 2}$				
	\mathbf{b}	A 200 N sphere is resting in a trough as shown in Figure 3. Determine the reactions developed at the contact surfaces. Assume all the contact surfaces to be smooth. Use Lami's theorem.	$\mathbf{5}$	$\mathbf{1 , 2}$	$\mathbf{3}$				

Figure 3.

| \mathbf{c} | Determine the support reactions for the system shown in Figure
 4 | $\mathbf{1 0}$ | 2 | $\mathbf{3}$ | $\mathbf{1 . 3 . 1}$ |
| :---: | :--- | :--- | :--- | :--- | :--- | :--- |
| | | | | | 2.1 .1 |
| 2.1 .2 | | | | | |

Page $\mathbf{2}$ of 7

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute)
Munshi Nagar, Andheri (W) Mumbai - 400058

Figure 4.

3	a	For Figure 5, determine the forces in each member of the truss using method of joints	14	3	3

Figure 5.

Page 3 of 7

Bharatiya Vidya Bhavan's
SARDAR PATEL COLLEGE OF ENGINEERING
(Government Aided Autonomous Institute)
Munshi Nagar, Andheri (W) Mumbai - 400058

Figure 6.

Figure 6.						
4	\mathbf{a}	Determine the support reactions for the beam as shown below in Figure 7.	$\mathbf{1 5}$	$\mathbf{1 , 2}$	$\mathbf{3}$	$\mathbf{1 . 3 . 1}$

Figure 7.

	b	State and explain Varignon's theorem.	2	1,2	2	1.3 .1
	c	How is a perfect truss different from an imperfect truss?	3	3	2	1.3 .1
5	a	A uniform ladder of length 4 m rests against a rough vertical wall with its lower end on a rough horizontal floor, the ladder being inclined at 50 to the horizontal. The coefficient of friction between the ladder and the wall is 0.3 and that between the ladder and the floor is 0.5. A man of weight 500 N climbs up the ladder. What is the maximum length along the ladder that the man will be able to climb before the ladder slips. The weight of the ladder is 1000 N.	5	2	4	2.1 .2
bA string ABCD carries two loads P and Q . If P is 500 N , find the force Q and tensions in strings BC and CD as shown in the Figure 8.	5	2	3	1.3 .1		

Figure 8

(Government Aided Autonomous Institute)

Munshi Nagar, Andheri (W) Mumbai - 400058

Page 5 of 7

Figure 12

| b | Two identical rollers each of mass 50 kg are supported by an
 inclined plane and a vertical wall as shown in Figure 13.
 Assuming smooth surface, find the reactions induced at the
 points of support A, B and C. | 7 | 1 | 3 | 1.3 .1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute)
Munshi Nagar, Andheri (W) Mumbai - 400058

| iii) 75 N acting 20° west of north | | | |
| :--- | :--- | :--- | :--- | :--- |
| iv) 120 N acting 30° south of west | | | |
| v) 90 N acting 25° west of south | | | |
| vi) 80 N acting 40° south of east | | | |
| All forces are acting from point O. | | | |

End Semester Examination for F.Y.B Tech (Civil/Mechanical/Electrical) March 2023

CLASS/SEM : F.Y.B. Tech (C/M/E)/Sem.-I

Duration: 3 Hrs
 COURSE NAME: ENGINEERING PHYSICS-I COURSE CODE: BSBTITS

- Question No 1 is compulsory. Answer any FOUR out of remaining SIX questions.
- Marks, Module No, Course Outcome number, Bloom's level and Performance indicators are given against the questions.
- Diagrams have to be drawn wherever necessary.
- Assume suitable data (if necessary) and state your assumptions clearly.
- Marks will be given on the basis of what will be written in the paper irrespective of your intentions! Good luck!

c.	(4 marks) In a semiconductor, the effective mass of an electron is 0.07 m and that of a hole is 0.4 m , where m is the free electron mass. Assuming that the average time for collision for holes is hal fthat for the electrons, calculate the mobility of holes when the mobility of electrons is $0.8 \mathrm{~m}^{2} / \mathrm{V}$-s.	5	4	3	$\begin{aligned} & 1.1 .1 \\ & 1.2 .1 \end{aligned}$
Q4.					
a	(8 ınarks) Using Schrödinger's time independent equation, obtain for a particle in a box of infinite height, its Eigen functions and Eigen values. Sketch the quantized Eigen functions and probability of finding the particle inside the potential well for $\mathrm{n}=1$ and n-2.	3	2	3	$\begin{aligned} & 1.1 .1 \\ & 1.2 .1 \end{aligned}$
b.	(8 marks) Explain an HCP structure by its (a) Co-ordination number and (b) average number of atoms in the unit cell. The distance between middle layer of the hcp cell and top layer jusc above the first hep cell is 0.75 nm . What is the length of the base diagonal?	4	3	2,3	1.1.1
c.	(4 marks) 100 keV electrons are passed through a thin film of metal for which the atomic spacing is $5.5 \times 10^{\cdots} \mathrm{m}$. Evaluate the angle of deviation for the first order diffraction maxima	1	1	5	$\begin{aligned} & 1.1 .1 \\ & 1.2 .1 \end{aligned}$
Q:5.					
a	(8 marks) Sketch the important planes in an FCC structure. Also derive their interplanar spacing values. If the radius of Nickel atom which belongs to FCC lattice is 1.24 A ; calculate the planar atomic density of the (110) set of planes of FCC.	4	3	2	$\begin{aligned} & \hline 1.1 .1 \\ & 1.2 .1 \end{aligned}$
b.	(8 marks) illustrate and explain Hall Effect. Hence obtain relation for Hall voltage and Hall coefficient in terms of current and magnetic field.	5	4	4	$\begin{array}{r} 1.1 .1 \\ 1.2 .1 \\ \hline \end{array}$
c.	(4 marks) A protor, is confined in an infinite square well of width 10 fm . (The nuclear potential that binds protons and neutrons in the nucleus of an atom is often approximated by an infinite square well potential.) Calculate the energy and wavelength of the photon emitted when the proton undergoes a transition from the first excited state ($\mathrm{n}-2$) to the ground state ($\mathrm{n}-1$).	2	1	4	1.2.1
Q6.					
a.	(8 marks) Explain Fermi level with variation of temperature in an N-type semicond uctor. In a solid, there is an energy level lying 0.012 eV below the Fermi level. What is the probability of this level being not occupied by electrons at foom temperature?	5	4	3	$\begin{aligned} & 1.1 .1 \\ & 1.2 .1 \end{aligned}$
b.	(8 rarks) Explain the formation of continuous and characteristic X-rays and sketch the spectra. Sylvine crystallizes in the form of simple cubic structure. The density of sylvine is $1990 \mathrm{~kg} / \mathrm{m}$ and molecular weight 74.6 . Determine the principal grating spacing of Sylvine. Also determine the glancing angle at which an X-ray spectral line of waveiength 0.1787 nm is reflected in the third order.	1	1	2,3	$\begin{aligned} & 1.1 .1 \\ & 1.2 .1 \end{aligned}$
c.	(4 marks) Evaluate the first energy level of an electron enclosed in a box of width 10A: Compare it with that of glass marble of mass 1 gm , contained in a box of width 20 cm . Can these levels of marble be measured experimentally?	3	2	3	1.2.1
Q7.					
$\stackrel{1}{ }$	(8 marks) Define Fermi energy level using Fermi function. Explain how does the Fermi level lie at the mid of the forbidden gap for intrinsic semiconductors.	5	4	1,2	1.1.1
b.	(8 marks) Using Heisenberg's uncertainty principle, prove that an electron cannot be a nucleon. An electron has a speed of $600 \mathrm{~m} / \mathrm{s}$ with an accuracy of 0.005%. Calculate the uncertainty with which we can locate the position of the electron.	2	1	3,5	$\begin{array}{\|l\|} \hline 1.1 .1 \\ 1.2 .1 \end{array}$
c.	(4 marks) A sample of BC C iron was placed in an X-ray diffractometer using incoming X-rays with a wavelength of 0.1541 nm . Diffraction from the (110) planes was obtained at $2 \theta=44.704$ for the first order. Calculate the radius of BCC iron.	4,1	3,1	3	$\begin{array}{\|l} \hline 1.1 .1 \\ 1.2 .1 \end{array}$

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute)
Munshi Nagar, Andheri (W) Mumbai - 400058

END SEMESTER-I EXAMINATION MARCH 2023

Program: F.Y. B. Tech C_{1} M, E) Sem I
813
Duration: 180 Min Maximum Points: 100

Course Code: BS-BT-106

Course Name: Engineering Chemistry-I

Instructions:

1 Question No (Q6) is compulsory
2. Attempt any 4 from $\mathrm{Q} 1, \mathrm{Q} 2, \mathrm{Q} 3, \mathrm{Q} 4, \mathrm{Q} 5$

3 Write the chemical reactions wherever necessary

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute)
Munshi Nagar, Andheri (W) Mumbai - 400058
END SEMESTER-I EXAMINATION MARCH 2023

	hydrogen gas				
c	Describe the basic principle and various components of gas chromatography for the determination of the unknown volatile constituent	10	4	2	4
Q5					
a	Explain different types transitions that take place in UV-Visible spectroscopy	5	2	3	4
b	'Write short a note on sewage water treatment	5	1	1	1
c	Describe the Zeolite method for the removal of metal cation ions from hard water with its regeneration reactions	10	1,2	2	1
Q6					
a	Find the acid value of 10.0 mL of oil sample required 3.0 mL of 0.01 N KOH to neutralize free acid (density of oil $0.95 \mathrm{~g} / \mathrm{mL}$)	5	1	3	2
b	Calculate the temporary, permanent and total hardness for the water sample contain $\mathrm{Mg}\left(\mathrm{HCO}_{3}\right)_{2}=50 \mathrm{mg} / \mathrm{L}, \mathrm{CaSO}_{4}=10 \mathrm{mg} / \mathrm{LCCl}_{2}-25 \mathrm{mg} / \mathrm{L}$	5	1	3	1
c	50 mL standard hard water containing $1.0 \mathrm{mg} / \mathrm{mL} \mathrm{CaCO} 3$ consumed 50 mL of EDTA. 100 mL of the unknown hard water sample consumed 50 ml of EDTA using EBT as an indicator. After boiling, filtration of the same hard water $(200 \mathrm{~mL})$ consumed 20 mL of EDTA using EBT as an indicator Calculate total, permanent and temporary hardness of water	5	1	3	1
d	A 100 ml of sewage water sample was reflexed with 20 ml of 0.25 N K 2 Cr 2 O 7in presence of dilute $\mathrm{H}_{2} \mathrm{SO}_{4}$ And $\mathrm{Hg}_{2} \mathrm{SO}$. The Unreacted dichrornate required 10 mL of 0.25 N Ferrous Ammonium sulphate solution. 20 ml of $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ and 100 ml of distilled water under same condition as the sample required 30.0 ml of 0.25 N ferrous ammonium sulphate solution. Calculate the COD of the sample	5	1	3	1

(Government Aided Autonomous Institute)
Munshi Nagar, Andheri (W) Mumbai - 400058

Invigilator Name:
Signature with date:

END SEMESTER EXAMINATION MARCH 2023

Student Name:
Seat Number:

Program: First Year B.Tech (Division C) Course Code: ES-BT103

Course Name: Engineering Graphics

Duration: 03 Hr .
Maximum Points: 100
Semester: I

Notes:

1. Attempt any FIVE questions.
2. Assume suitable data wherever necessary and justify the same.
3. Create the folder in the DRIVE C to save the drawings.
4. Folder name should be end semester exam (ESE) followed by student's seat number (Ex.: ESE,_C2110058).
5. File; name for respective questions should be the question number itself (Ex.: Q1/Q2).
6. Each drawing should be saved separately mentioning question number as the drawing file name.
7. Q1 and Q2 etc. files must be saved separately in the same folder.
8. Before leaving the examination hall, verify all drawings are uploaded on the server.
9. Save the work frequently.

END SEMESTER EXAMINATION MARCH 2023

4	A cone of base 60 mm diameter and the axis 80 mm long lies on HP with its axis inclined at 45° and 30° to HP and VP, respectively. Draw the top and front views of the cone.	20	2,4	3	5.1.1
5	Figure shows an isometric drawing of the block. Draw the following views: a) FV looking in X direction b) TV c) SV	20	3,4	6	5.1 .2
6	Draw the isometric view of the following:	20	3,4	6	5.1.2

END SEMESTER EXAMINATION MARCH 2023

7	Figure shows FV and TV of an object. Draw the missing LHSV.	20	3,4	6	5.1.1

